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SPC 99-4004 -"Simulation of low light level adaptive optics systems" 

Final report-June 2000 

Dr C.J. Solomon 

ABSTRACT 

This report addresses the development of simulation tools which are suitable for the 
design and analysis of optimum imaging scenarios for adaptive optics systems. In particular, we 
discuss the physical basis and suitability of the modular CAOS system for such studies. A 
description of its essential features and the basic philosophy behind its use is included together 
with an illustrative design. Summary documentation is also included. We conclude that CAOS is 
a powerful system with considerable flexibility and possessing considerable potential for 
adaptive optics study and analysis. 

A second part of the report is given in the form of a paper submitted June 8lh 2000 to 
Journal of the Optical Society of America A - "Variational solution for modal wavefront 
projection functions of minimum error norm". This describes the derivation of vector functions 
which are orthogonal to the gradients of the wavefront modes. Their property of minimum noise 
propagation allows an optimal method for estimating atmospherically distorted wavefronts 
through direct integration of the wavefront slope measurements. 



Both solutions have in fact produced a variety of new problems. In P^-^^^^f 
of the artificial star (the so-called cone effect [5]) and the blindness tchup-nIt ^ °f *e 
wavefront (tip-tilt indeterminacy [6]) are major considerations. The co   o tsu h ^s ^so 

rnnsiderab e AO systems which will employ LGS must therefore be efficiently implemented. 
Ano htopic tf qui    general interest in AO relates to the optima, use of the incoming photon 
fluTo    T,^elafforded the luxury of high signal-noise ratios and this implies an ongoing 

SÄ of innovative wavefront sensing ^™%f™^Zl£t- 
nhoton flux would allow us to increase the limiting magnitude of NGS AO (mc.tas.n, tue sk> 
co^ge) or" reduce the necessary laser power. For these applications and others a powertul. 

realistic and versatile simulation tool is desirable. 

CAM Kode for adaptive optics systems) is a purpose-designed software tool for the simulation 
„t ,d-m i ve opties systems. Written in the IDL programming language, there have been a numbe. 
,   „I'Lr aC„d CAOS is freely available ,o workers in adapt,ve opt,csjhe,eveopnten, o, 

ch"r,eri2e system performance. The second is ,o allow the evaluate ot new teehntques. 

designs and studies. 

1.2 Features of CAOS 

CAOS has two key features which make it easy to use - 
• A modular structure 
• A graphical application builder 

1.2.1    Modules 

Modules are the basic building blocks of the simulation. Each module ^^^^^ 
identifiable aspect of the adaptive optics system or the interpretation ot its .esults. Chaos m 

version 2.0 has the following modules- 

Atmospheric building ATM 
Beam splitter BSP 



Centroiding calculus CEN 
Calibration fibre CFB 
Command sequencer CSQ 
Data display DIS 
Geometrical propagation DMI 
interferometric beam combiner IBC 
Imaging device IMG 
Laser definition LAS 
Make calibration data MCA 
Sodium layer NLS 
Wavefront reconstruction REC 
Data saving SAV 
Shack Hartmann sensor SHS 
Source definition SRC 
Structure function calculus STF 
Tip -tilt centroiding TCE 
Time filtering TFL 
Tip-tilt Mirror TTM 
Wavefront adding WFA 

Details of some of the most important modules are given later in the report. 

1.2.2    Philosophy of CAOS 
Each module is defined by a standard group of function calls, a set of parameters which are 
required for the module's correct execution and a set of predetermined inputs and outputs. 

The basic philosophy is that the user not be required to perform any coding but need only 
combine the modules in a meaningful way and supply meaningful values of the parameters to 
each of the modules. In this way, and within the constraints imposed by the software, the 
designer may concentrate on the concepts. To assist with this simulation design, a graphical 
interface (gui) termed the application builder is supplied. 

1.3 The application builder (AB) 
The application builder is a graphical tool provided to aid the design of simulation programs. It is 
used only during the design phase. After that the simulation program will run as a stand-alone 
application with no subsequent interaction with the AB. 

A schematic diagram of an arbitrary simulation program designed via the AB. together with the 
module list scroll-down menu of the AB, is shown in Fig. I. The simple interface consists of a 
worksheet - essentially a collection of contiguous cells - with some pull-down menus. Each cell 
in the worksheet may accomodate a module. 
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Figure 1: CAOS Worksheet with pull-down menus 

Essentially, modules are selected from the pull-down "Modules" menu and dropped into a chosen 
cell position on the worksheet. From the point of view of the application builder, each module 
can only be executed if the required set of inputs to the module are available. These inputs are 
generally provided by the outputs of other modules. Accordingly, the input and output ends of 
each module are colour coded to indicate compatibility. The basic appearance of a module as it 
appears on the worksheet is given below in figure 2. 

BODY OF 
MODULE 

INPUT 
END 

NAME 

OUTPUT 
END 

Figure 2: Simulation Module 

The colour of the input and output simply specifies compatibility between modules. These cannot 
be changed or edited. Each output may be joined to an arbitrary number of input handles but 
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nly reCeiVe a Single link from ^ outPut handle Conceptually speaking the 
body of the module contains the parameters which are required for the module to execute once 
the design is complete. These can be set and edited by clicking with the mouse on the body of the 
module and this invokes the corresponding "parameter setting" GUI - i.e. a graphical window 
containing the current values of the required parameters as editable text fields. 

Links are then defined between the output of a given module and the input of another thus 
denning the data flow within a simulation project. In the simple example below in figure 3 we 
see the source module (which defines the type of luminous object we are looking at) and the 
atmospheric builder module being linked with the geometric propagation module In this 
particular case, these three modules would be suitable to simulate the propagation of the 
waverront from a chosen source through an atmosphere of selected spatiotemporal behaviour to 
the pupil plane of the telescope. 

FIG.3 LINKING MODULES 

ATM 

JüttiUiSüttäiÄäi 

GPR 

SRC 

Note that the output colour of each module in the sequence matches the input colour Grey is 
used to indicate compatibility with all modules. Cross-hatching at the input indicates that no 
other modules may feed into the given module. 

The links (indicated in this case simply by straight lines) are made by clicking on the output of 
one module with the mouse followed by clicking on the input of the other. 

After the design is completed, the block diagram of linked modules is analysed by the application 
builder and the IDL code implementing the simulation program is generated. The whole 
simulation can be saved as a project which may be executed and opened for later modification if 
desired. 



1.4 CAOS Design - basic summary 

In summary, the simulation design procedure may be reduced to the following sequence - 

TASK 
Select required modules 

Specify the values of the parameters required 
by each module 

Form legal links between modules 

Save project 

ACTION 
From pull-down menu in the application 

builder, select and drop modules into cells on 
worksheet 

Click on body of selected module to invoke 
GUI parameter setting window. Set parameter 

values and save 
Click on the output end of module A followed 
by a click on the input end of module B. This 

links A and B 
Select from pull-down menu 

1.5 Running CAOS simulations 
CAOS simulations are run as normal IDL projects from the command line IDL interface. Any 
inconsistencies in the parameter setting of each module are normally detected prior to this stage 
by the application builder which will indicate where the inconsistency has occurred and suggest 
alternative values. 

1.6 Platform dependence, reliability and bugs 
CAOS has been primarily developed to run on a UNIX/LINUX platform. As freeware, the 
developers make no assurances as to reliability and existence of bugs. The reliability of CAOS 
linux v2.0 is however considerably better than previous version. CAOS 2.0 for MsWindows95- 
98 exists but reliability is currently not as good. 

1.7 Obtaining CAOS 
Scientific workers who wish to use CAOS should mail marcel@arceti-i .astro. it. On 
receiving permission, they may then download the software from the corresponding ftp site. 

1.8 EXAMPLE APPLICATION 
In this section, simply to illustrate the concept more clearly, we present a conceptual desisn and 
result obtained from a relatively complex LGS adaptive optics system. Full details are available 
in the reference [7] . Figure 4 shows the conceptual design of the system in which the modules 
are placed on the worksheet and then linked in the appropriate configuration. 

In the scenario depicted in fig 4, a natural guide star is used to sense and correct the tip-tilt modes 
of the atmosphere whilst a laser beacon is used to correct the higher order aberrations using a 
Shack-Hartmann sensor. In this particular study, two equal turbulent layers at 0 and 10 km 
altitude with 4m/s and 8m/s wind speed perpendicular to each other, were defined within the 
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ATM module. The wavefront reconstruction which is performed after sensing the LGS with the 
Shack-Hartmann sensor was carried out taking into account only the Zernike modes ranging 
between 4 and 24 (within the REC module). A pure integrator was used in the TFL module* 
(F(s)= G/s), the total gains of the open-loop transfer function at 0.1 Hz being 95 Hz and 159 Hz 
in the high order and tip-tilt adaptive loops respectively. 

Notice that the GPR module appears three times: once for the NGS propagation down to the 8m 
observing telescope, once for the laser beam upward propagation from the 50cm projector to the 
Na-layer, and once for the LGS downward propagation to the 8 m observing telescope. Doing so, 
the 8 m observing telescope parameters have to be defined twice, as well as the parameters for 
the wavefront correctors (TTM and DMI). Notice the special module after the TFL module 
corresponding to the point where the loops are closed. 

The correction was considered in the K-band (A = 2200»/« . AA = 400 tun) and the PSF 

computed both for the uncorrected and corrected cases. Figure 5 shows the resulting long- 
exposure PSFs, together with the diffraction-limited PSF. One can deduce from these plots that 
the obtained Strehl ratio is approximately 0.36. In this particular case, it is possible to form a 
theoretical estimate of the compensated Strehl ratio based on the contribution to the overall phase 
variance (see [8]). The value obtained in this way is S=0.34 agreeing closely with value obtained 
from the simulation. 

Lop^ 
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PSF Longitudinal Cuts 

0.4 

0.2 

Diffrac.-limited PSF • 
Corrected PSF +- 

Uncorrected PSF  

0-0 H-mri .firm fi. -J-^ZZZejZ-.—,-, ,-, ,.,, .-.Vr^nk, 
-0.3 -0.2 -0.1 0.0 

[arcsec] 
0.2 0.3 

Figure 5. longitudinal cuts through the normalized PSF (uncorrected. corrected, and diffraction 
limited). 



2. BASIS OF SIMULATION MODULES 

In this section we give a brief description of the model underpinning the major modules 
contained in CAOS. 

Wavefront Generation 
Three modules are sufficient to simulate the entire process of wavefront generation as received at 
the pupil of the observing telescope. Implicit in this procedure is specification of the 
characteristics of the source (SRC module), the turbulent atmospheric model (ATM module), and 
the propagation from the source to the observing telescope through the atmosphere (GPR 
module). 

2.1. Atmosphere Building (ATM) Module 
The ATM (atmosphere building) module generates the turbulent atmospheric model and 
produces the distorted wavefronts through the module GPR (geometrical propagation). ATM 
therefore has no input beyond the parameters selected when the parameters setting GUI is 
invoked. 

The output of the ATM is composed of a number of turbulent layers together with their altitudes. 
Each turbulent layer can be physically simulated as a random phase screen whose phase power 
spectrum has the von Karman or the Kolmogorov behavior. If a temporal evolution is selected, 
its base-time is fixed within ATM and then rules all subsequent simulation branches. In this case, 
each turbulent layer is also affected by a velocity vector. 

The first step in building the turbulent atmosphere is to generate the phase screens that will 
simulate the behavior of each turbulent layer. Two methods are currently available for selection: 
a method based on fast-Fourier-transformation- (FFT-) with boosting of low-spatial-frequency 
boosting [9] and an approach based on random addition of Zernike-polynomials [10]. Details are 
given in the associated references. 

Once the phase screens have been generated, the turbulent atmosphere is built by arranging the 
required number of phase screens/turbulent layers with their altitudes and taking into account the 

C; (It) profile chosen by the user. If temporal evolution is needed, this is done once only. ATM 

will then just shift each of the layers taking into account the base-time (minimum 
atmosphere/turbulence evolution time) and their associated velocity vectors. If temporal 
evolution is not selected , no base-time and no velocity vectors are requested and consequently 
each time that ATM is called, it outputs a statistically independent ensemble of turbulent layers. 

2.2. Source Building (SRC) Module 
A natural object or an artificial laser beacon (LGS) can be generated and in both cases they can 
be defined as either point-like or as an extended bidimensional object. For a natural object, the 
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angular coordinates of the source (off-axis and position angle), source V-magnitude (background 
magnitudes for any subsequent noise computations) and spectral type can be chosen via the 
corresponding parameter setting GUI. The flux from the natural source and the sky background 
are then derived for the whole range of optical Johnson bands (from U to M). The angular 
coordinates are passed to the GPR module with respect to a so-called main telescope having 
coordinates [0,0,0]. The actual telescope pointing to a given source may be distinct from this. For 
a LGS, its finite distance to the telescope must also be provided and the source flux (computed 
from its equivalent V-magnitude) is non-zero only in a narrow Na-band 
(A = 589nm, AA = l0nm). 

2.3. Geometrical Propagation (GPR) Module 
GPR performs geometrical propagation through the atmosphere by linear superposition of the 
fluctuations produced by each turbulent layer. The module can be used to simulate either 
downward propagation through the atmosphere (together with SRC and ATM) or propagation 
upwards through the atmosphere. In both cases, the simulation takes into account the physical 
coordinates of the two objects from which and to which the propagation has to be performed in 
order to establish which part of each atmospheric layer has to be used. 

For natural objects located at infinity, all the wavefront portions chosen at different altitudes have 
the same size as the telescope pupil. Thus the light beam propagation shape is cylindrical. On the 
other hand, a sodium LGS is situated at a finite distance from the observing telescope and the 
light beam propagation shape is conical. The relevant surface for the upper layers is thus smaller 
than tor the lower ones. This cone effect is simulated using a rescaling method. In other words, 
before carrying out the linear superposition, each portion of the wavefront is magnified by a 

factor        N"     where HNa is the altitude of the sodium layer, and /;,.. is the altitude of a given 
" Nu      "; 

turbulent layer. The number of photons from the natural source and the sky background are 
computed using the value of the diameter and the obscuration ratio of the observing telescope, as 
well as the respective fluxes from SRC. The only parameters needed before running this module 
are the coordinates of the observing telescope with respect to the point [0.0.0], its diameter and 
the obscuration ratio. 

2.4 Tip-Tilt Sensing and Correction (TTS, TCE and TTM) Modules 
The TTS (tip-tilt sensor) simulates the process of imaging the wavefront coming out of the GPR 
module. The designer can define the number of pixels in the detector, the field of view subtended 
by each pixel, the algorithm to estimate the tip-tilt, the sensitive bandwidth of the detector and 
the integration and delay times. The module can also take into account different noise sources, 
namely Poisson photon and dark-current noises and Gaussian read-out noise. The intensity 
pattern in the focal plane is computed by using standard Fourier-based scalar diffraction theory. 

In the case of tip-tilt sensing with a LGS (generated with the LAS and NLS modules) each sub- 
layer is treated as an extended bidimensional source, so that for each sub-layer we compute a 
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PSF aberrated by atmospheric turbulence plus the defocus aberration caused by the fact that the 
LGS is only focussed in a given plane. 

In a conventional AO set-up, the TTS module is followed by a tip-tilt centroiding calculus 
(TCE) module that takes the intensity pattern on the detector as input and estimates the tip-tilt 
according to the detector and algorithm chosen. CAOS currently provides barycentre calculus for 
a CCD, or quadrant differential measurement for a Quad-cell detector. 

The required inputs into the tip-tilt mirror (TTM) module are a GPR-propagated wavefront 
and a set of measurements from the TCE module. Sometimes, the designer may wish to first 
filter these in the time domain using the TFL module. A tilted plane is then subtracted from the 
wavefront in order to correct the measured tip-tilt. No dynamic behaviour of the tip-tilt mirror is 
explicitly considered although this is possible with a suitable choice of time filter (see next 
section). 

2.5 Time Filtering (TFL) Module 
The time filtering (TFL) module implements a recursive digital filter in the time domain. 
Because most AO systems work in closed loop, the TFL module can be used to emulate a servo- 
control law and time filter the instantaneous estimate of the residual wavefront requiring 
correction before applying it to the wavefront corrector. The design of the servo-controHaw is 
critical in order to ensure the closed-loop stability and provide optimal performance for a given 
AO system, atmospheric conditions and reference source.20,2' The TFL module, however,Is not 
limited to simulation of a control law and can be used whenever time filtering is needed. For 
example, noise filtering in open loop configuration can be simulated in this way. 

The equivalent Laplace domain transfer function for the digital filter design can be selected from 
any of the following: (i) a generic analog filter expressed in terms of gain, zeros and poles, (ii) a 
single pole at zero frequency with a user defined gain G, i.e. a pure integrator with H(s) = G/s, 
and (iii) a proportional-integrator-derivative (PID) filter given by- 

H{s) = Kp+^-+Ka   
ö)nA' 

s '' S + (On 

where K,„K, and Ktl are the gains for the proportional", integral and derivative 

components of the filter, the low-pass correction term -3_wjtn cut-off frequency 
co0+s 

is introduced to filter out the contribution of the high-frequency noise in the derivative 
component. In each case, the Z-transform of the corresponding digital filter is computed via use 
of the bilinear approximation, and the recurrence relationship is shown within the parameter 
setting GUI. One can also plot the Bode diagram of the equivalent analog filter. The TFL module 
code accepts a command type structure data as input, in which the present values of the discrete- 
time signals to filter are stored. The same digital filter is applied to each signal, and the result is 
passed in another command type structure data as output. 
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2.6 Shack-Hartmann Sensing (SHS) Module 
The SHS module computes the image of the guide object (i.e. natural, point-like guide star, 
extended laser beacon etc) as viewed by each subaperture of the Shack-Hartmann lenslet array. It 
then combines them into the full sensor image resized to the CCD scale, integrates the images 
over the integration time and adds the noise. Its input is the wavefront and its output is the CCD 
sensor image integrated over the required time. 

The Hartmann lenslet geometries may be selected from the following - 
i) A square geometry. 
ii)        Hexagonal geometry. 

iii)       Radial geometry with equal area subapertures. 

i v)       A generalised radial geometry in which the number of rings in the array and the 
number of subapertures per ring may be specified 

v)        Customised geometry defined by means of a user-supplied file (which must contain 
the sensor geometry array and optical axis positions of the lenslet in this array). 

The default setting is to assume that the pupil is centered on the sensor. However, the size of the 
pupil relative to the sensor and its relative shift can be specified if required. 

CCD camera characteristics can also be specified within this module. The number of camera 
pixels corresponding to one subaperture, the angular size of a CCD pixel, the subaperture angular 
size (if there is a field stop placed in front of them), the integration time and read-out time and 
the working wavelength band can be set. It is also possible to consider the noises (in the same 
way as in the TTS module), and to use a standard Gaussian calibration fiber or a specific one 
(adjustable FWHM and shape). Differential elongation of LGS tridimensional spot and Rayleigh 
scattering cone on each subaperture have also been implemented. 

An example of a simulated CCD sensor image is shown in Fig. 6 for a square 7x7 Shack- 
Hartmann sensor, with 8x8 pixels under each subaperture. The aberrated wavefront corresponds 
to third order astigmatism. 

2.7 Centroiding calculus module (CEN) 
The CEN module takes the output from a SHS CCD image and defines the pixels over which the 
estimate of the subaperture centroid is to calculated. The calculated centroid positions can be 
linearly related to the local slopes of the wavefront averaged over the subapertures. One can 
choose to rebin the CCD camera pixels over which the centroiding is made and can set the rebin 
factor to any submultiple of the linear number of pixels per subaperture. One can also decide to 
use the fibre reference measurements as zeros for CEN output measurements or to give the raw 
(non-referenced) data. The extracted pixels, on which centroiding is computed, cante centred on 
the subaperture optical axis (usual case) or on the reference measurement central positions 
(useful in case of large static aberrations). 
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Figure 6. Shack-Hartmann wavefront sensor (left), representation of the spots (centre) and of the 
measured slopes (right) for a square 7x7 subaperture sensor. 

2.8 Reconstruction (REC) Module 
Input to the REC module is the centroiding measurements which are output by CEN. The REC 
module can be employed to perform three basic functions - 

(0        To visualize the measured approximation of the wavefront for the Fried geometry. In 
this case, the output is the local wavefront phase reconstructed at the actuator 
positions. 

To compute the mirror commands to be sent to the time filtering module. In this case, 
the output is the mirror command voltages. 

To evaluate the modal coefficients of the measured wavefront. In this case, the output 
of the module is the modal coefficients of the specified basis functions. Any of the 
three bases: mirror modes, Zernike circular polynomials or a Karhuenen-Loeve basis 
may be specified. The interaction matrix can be automatically calibrated by the 
simulation or can be provided by the user. Command-to-mode and mode-to-command 
transfer matrices are also computed from the mirror influence functions. 

(ii) 

(iii) 

2.9 Deformable Mirror (DMI) Module 
The DMI module builds the deformable mirror geometry as well as its influence functions, and 
uses the commands computed by the reconstructor and time filtering modules in closed loop to 
correct the incident wavefront. It therefore requires two inputs: the incident wavefront to be 
corrected and the commands coming from the reconstruction (REC) or time filtering (TFL) 
module. DMI has two outputs: the corrected wavefront and the mirror geometry parameters 
needed by the reconstructor module to build the interaction and passage matrices (number of 
active actuators and influence functions of the mirror). One can specify the geometry of the 
mirror, its influence function characteristics, and its dynamic behavior. If required, one can also 



14 

specify the size and central shift of the pupil on the mirror, the angle of incidence of the 
wavefront and the mirror azimuth angle in its own plane relative to the plane of incidence. 

Currently, 2 pre-defined piezo-stack mirror geometries are provided. These are square and 
rectangular geometries with the number of actuators and spacing along x- and y-axes specified 
by the user. A custom geometry can also be defined. The dynamical behavior of the actuators is 
characterized by the gain (displacement induced by a unit voltage command), by the maximum 
admissible actuator stroke and by the time delay between reception of the command and 
application of the stroke. Hysteresis is not currently modelled. 

2.10 Data analysis-system performance 
Whilst the aim of CAOS is not to provide extensive data analysis tools, basic system 
performance is provided through the following modules - 

PSF - a point spread function/image computation module 
DIS - a generic data display module 
SAV - for saving data generated during the simulation 
STF - a structure function computation module 

The specific functionality of these modules can be found in the user documentation. 

2.11 CAOS - CONCLUSION 
Our experience to date has shown that CAOS is a powerful tool for the simulation of adaptive 
optics systems enabling studies of scientific issues to be carried out with much less effort than 
would be required by writing one's own code. 

Particularly attractive features are i) There is no need for the user to get involved in low level 
coding ii) The well-defined and clear use of modules enabling simple modeLling and design iii) 
In those cases where CAOS cannot provide the required functionality, the user mav contribute 
their own module provided it follows the established protocol (though this has not'been carried 
out in our case). Disadvantages of the CAOS approach in our experience are i) The overall 
flexibility means that the generated code is not optimized. Execution time can be long and it is 
demanding on computer memory resources (in general, 128 Mbytes Ram should be considered a 
minimum), ii) The software is not as stable as would be ideal. 

In conclusion, however, we believe that CAOS ranks as an excellent tool for AO studies. It's 
continued development and improvement and more widespread use should mean that it will 
become an increasingly important resource for the AO community. 
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3. Modal wavefront projection functions with minimum error norm 
In this following section, we present an article submitted for publication on June 8th 2000 to 
JOSA A. The paper is a theoretical contribution which shows that we may derive vector 
polynomials to effectively restore orthogonality to the representation of wavefronts as a modal 
expansion when the wavefront sensing technique provides measurement of the local gradients of 
the wavefront. A variational formulation shows that the polynomials are optimum as they will 
guarantee that the error propagation in the wavefront reconstruction is minimum. We anticipate 
that this subject may be of relevance to many workers in the fields of wavefront sensing, adaptive 
optics and optical testing. 
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ABSTRACT 

Common wavefront sensors such as the Hartmann or curvature sensor provide 

measurements of the local gradient or Laplacian of the wavefront. Expression of wavefronts 

in terms of a set of orthogonal basis functions thus generally leads to a linear wavefront 

estimation problem in which modal cross-coupling occurs. Auxiliary vector functions may 

be derived which effectively restore the orthogonality of the problem and enable the modes 

of a wavefront to be independently and directly projected from slope measurements. Using 

variational methods, we derive the necessary and sufficient condition for these auxiliary 

vector functions to have minimum error norm. For the specific case of a slope-based sensor 

and a basis set comprising the Zernike circular polynomials, these functions are precisely the 

Gavrielides functions. 
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INTRODUCTION 

In problems of wavefront estimation, it is common to expand the wavefront in terms of a set 

of orthogonal functions or modes - 

N 

p(x)=2>*p*(x) (i i) 

which obey the orthogonality relation - 

\Pj(x)Pk(x)d2x = öjk {L2) 
D 

and D denotes the domain of integration. 

The most commonly used set of functions in optics is the Zernike circular polynomials. 

Speaking generally, orthogonal bases are desirable because they allow the modal 

coefficients to be evaluated by simple integration of a product of two functions over the 

domain, D using the orthogonality relation given by eq. 1.2. However, since Hartmann 

sensors (and shearing interferometers) provide estimates of the gradient of the phase rather 

than the phase itself, the appropriate model is - 

{M*jhp*(vp*M) (1.3) 

where the coordinates x. denote the position of the slope measurements within the pupil. In 

this case, the orthogonality of the wavefront basis cannot be exploited. Modal cross- 

coupling will occur and the coefficients must be obtained by solving an inverse 

problem/overdetermined system of linear equations. Many workers have examined this 

problem in a search for optimal solutions [1-6]. 

The evaluation of modes by direct integration could be restored if we can derive a set of 

auxiliary vector functions F, (x) which are orthogonal to the gradients of the basis functions. 



To establish the necessary conditions for such a set to exist, consider that the divergence of 

these vector functions gives the basis functions i.e. we have the relation - 

V-F,(x) = /»(x) (M) 

Using the orthogonality relation eq. 1.2ineq. 1.1 and substituting for 7>(x) in eq. 1.4, the 

modal coefficients are given by - 

ai=jcp(x)y.Fi(x)d2x (L5) 
D 

This may be written as - 

a<=! V-{F,.(x)«p(x)}</\v- J V<p(x)F,(x) d2x (1.6) 

Applying the divergence theorem, we obtain - 

«/=J P(x) F,(x)- d\-\ V(p(x).Fi(x)d2x (1.7) 

Clearly if the required set of functions F) (x) satisfies the relations - 

V.F;(x) = />(x) 

F,(x).JI = 0 (L8) 

where F (x)- d I denotes the normal component of the function to the closed contour C of 

the integration domain D, we then have - 

a=-\V<p(x)-F;(x)d2.x (1.9) 

In other words, we may evaluate the modes by direct integration as required. It has been 

shown that there are, in fact, a number of possible sets of vector polynomials which may be 

used in eq. 1.9 [7-9] and there is no unique solution to the problem described by eq. 1.8. 
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2. VARIATIONAL FORMULATION 

In the remainder of this paper, we will address the question of how to derive the optimum set 

of vector functions F) (x) . By optimum, we mean that set of vector functions which will give 

the minimum error or noise propagation in our estimate of the wavefront given by eq. 1.9. 

The estimate of the k"' modal coefficient of the wavefront will be given in practice by - 

ak=\d(x)-Fk(x)d2x (1.10) 
D 

where d(x) = V<p(x) + v(x) and v(x) is the additive noise vector at x 

If we may assume a noise process having zero mean and covariance a28 (x -x') (which is 

reasonable for Hartmann-type sensors), it is straightforward to show that the variance in 

radians' associated with our estimate of the k mode is 

N (Fk) = cr2j\Fk(xfd\x      (1.11) 

The noise propagator is thus defined as N(Fk ) = J"|FA (X)|
2
 d\x and depends only on the 

D 

particular choice of the vector functions through the volume defined by |FA (X)|
2
 in D. The 

ensemble-averaged mean-square error associated with the estimator is then - 

.vW5>(Fl)+ £/(<■,-a, f) 
A=l k=M+[ ' ' 



where the latter term simply corresponds to unestimated modes. As the conditions 

specified in eq. 1.8 do not determine a unique solution for Fk (x), there are many 

possible solutions for each mode, each having a different associated noise propagator. 

The key point is that we seek to minimise the noise propagators expressed by eq. 1.10 

subject to the constraint equation and boundary condition expressed by eq. 1.8. This is 

a variational problem. Accordingly, we introduce the Lagrange multiplier function 

K (x)and seek to minimise an objective function given by - 

Q = j\Fk(xfd2x + jXk(x){V.Fk(x)-Pk(x)}d2x (1.12) 
D D 

We now take first variations in Q with respect to Fk (x)and set these to zero to find 

the stationary points of Q - 

Q = 2J8Ft(x)-Ft(x)d2x + j\k(x)V-SFt(x)d2x = 0 (1.13) 
D D 

SinceV--jX (x)F, (x)} = A, (x)V-FA (x) + F, (x)- VA, (x), this may be expressed as - 

Q = 2J8Ft (x)-F, (x)d2x + JV.{A, (x)SFk (x)}d2x-\\ (x)dFk (x)-dl= 0 
D D D 

(1.14) 

Applying the divergence theorem to the second integral in eq. 1.14 and rearranging 

we obtain - 

Q = j{2Fk(x)-VAk(x)}.ÖFk(x)d2x + jöFk(x)-Ak(x)d2x = 0 
D c 

(1.15) 

The boundary condition Fk(x)-dl = 0 from eq. 1.8 ensures that the last integral in eq. 

1.15 is identically zero and we arrive at the simple condition for the Fk (x) to have 

minimum error norm - 
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F,(x) = VA,(x) (1J6) 

In other words, the F, (x) are an irrotational set of functions - i.e. must be expressible as 

the gradient of an associated scalar function. Note we have dropped the factor of 2 as this 

will have no effect on the functional form. Substituting eq. 1.16 into the constraint given 

by eq 1.8 we find that the associated scalar field is determined by the Poisson equation 

with Neumann boundary condition - 

V%(x) = Pk(x)        xeD 

VA,(r)-n(r) = 0        reC (U7) 

This is the main result of our analysis. The Poisson equation with Neumann boundary 

conditions has a unique solution and the minimum error norm, modal projector 

functions can be obtained by solving eq. 1.17 for the given set of basis functions, 

Pk (x). Such a set of functions was, in fact, explicitly derived in analytic form for the 

Zernike circular polynomial basis by Gavrielides in 1982 [10] although the noise 

propagation behaviour of these functions was not addressed in his original work. For 

completeness, their analytic form is given here - 

The Gavrielides'vector polynomials are defined in polar coordinates as follows - 

Fi(r,$) = F;Xr,d)r + Fi;(r,6)$    where 

For m * 0 

F; =^2(n + l) I; (r) cos(mtf) ,// iseven 

F; =^/2(II + 1) T;: (r) sin(mtf) if i isodd 

Fe =-V2(» + 0 ö;(0 [-msin(/m?)] if i iseven 

Fe =^V2(" + 1) Q: (r) |>cos(/m>)] ,// isodd 
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ii—in 

T»> t \     1 \^ C"('s)(/I-2.y + 2) i-     . ,   ,-, 

4^     n + m         . V n - m , 1 L -I 
— 5 + 1 s+\ 

a/zJ where 

C(*) = - 

2 

n + m 
— s + l 

n - m 
■s+\ 

[(n -2s + 2) r'"-1 -/m-"-2v+l] 

■r(/i-j)! 

n - m ^ « + 777 ^ 

For 77t = 0, we have - 

H-2.V+I 

 A' (72-2.V + 2) 

(1.18) 

3. CONCLUSION 

Given the inherent simplicity of modal projection from slope measurements according 

to eq. 1.7, one may speculate that these functions should see more widespread use in 

wavefront sensing and estimation problems. We anticipate that the knowledge of their 

minimum noise propagation behaviour will  make them a simple and attractive 

approach  to  wavefront  estimation  from  slope  measurements  and  lead  to  their 

It is interesting to note that the problem we have discussed of obtaining a set of 

auxiliary vector functions which gives minimum wavefront error norm has a close 

analogy with minimum physical principles. Eq. 1.17 may in fact be identically used to 

describe the equilibrium shape of a membrane (with fixed boundary described by the 

closed contour C) over which a force Pk (x)acts to produce vertical displacement 
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K (x). In this case, J|Ft (x)| d2x represents the potential energy stored in the 
D 

membrane and will be equal to the work done in bringing the membrane to it's 

equilibrium position J Pk (x)\ (x)d2xon\y in the case of conservative fields - i.e. 
D 

whenF,(x) = VA,(x) [11]. 
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